Fire Regimes IGBP Fast Track Initiative

M.Flannigan, T. Swetnam C. Whitlock and IGBP FTI Team

Outline

- Fire background
- Climate change
- IGBP Fire Fast Track

Canadian Fire Statistics

- Incomplete prior to 1970
- Currently average of 9000 fires a year burn 2.6 million ha
- Area burned is highly episodic – 0.4 to 7.6 million ha
- Lightning fires
 - 35% of total fires
 - represent 85% of area burned
- Fire size
 - 3% of fires are >200 ha
 - represent 97% of area burned

Large Fires in Alaska and Canada 1980-1999

Fire polygons kindly provided by Canadian Fire Agencies (Provinces, Territories and Parks Canada) and the state of Alaska

Forest Fires – 4 Key Factors

- Fuel loading, moisture, structure etc.
- Ignition human and lightning
- Weather temperature, precipitation atmospheric moisture and wind; upper atmospheric conditions (blocking ridges)
- Humans land use, fragmentation, fire management etc.

Fire and Carbon

~700 Pg carbon stored in the boreal forest ~30-35 % of the global terrestrial biosphere

Fire plays a major role in carbon dynamics: it can determine the magnitude of net biome productivity

- 1) combustion: direct loss
- 2) decomposition of fire-killed vegetation
- 3) stand renewal: young successional stands have potential to be greater sinks than mature stagnant forests

Climate change – pessimist or optimist

Observations above – summer temperature changes below 2080-2100

Climate Change Projections

- GCMs project 1.4 5.8° C increase in global mean temperature by 2100
- Greatest increases will be at high latitudes, over land and winter/spring
- Projected increases in extreme weather(e.g., heat waves, drought, floods, wind storms and ice storms)
- Observed increases across westcentral Canada and Siberia over past 40 years

Projected temperature changes vary considerably from year to year

CCCma Surface Temperature Change Projection for 1990 Simulated by CGCM1 (http://www.cccma.bc.ec.gc.ca)

A smoking gun?

- Area burned in
 Canada is strongly
 related to humancaused warming
- Impacts of climate change are already here
- A warmer future means more fire in Canada

FTI Objectives

- Synthesize quantitative knowledge on impacts of changes in global fire regimes on a range of ecosystems services
- Assemble global and regional data for fire model development; this would be used to improve emission estimates of GHGs
- Future fire activity impacts on vegetation, people, GHGs so adaptation /mitigation options can be explored

Fire and Weather Feedbacks: potentially positive

Weather becomes more conducive to fire: more fire

Carbon released from more fire enhances greenhouse gases further

Fire Regimes

- Global map of fire regimes fire regime includes frequency, intensity, severity, seasonality, size, cause, type...
- Two potential approaches
 - suite of landscape fire models to run over the globe (bottom up)
 - fire is incorporated in DGVMs (Top down)
- Identify vulnerable areas
- Past, present and future fire regime maps will be generated

Why fire?

- Fire responds rapidly to changes in climate/weather
- Fire catalyst for vegetation change
- Fire important in terms of emissions of GHGs and a positive feedback cycle

Integrated Fire Research Framework

What's next?

- To estimate future fire regimes we have to understand the linkages and interactions between fire, vegetation, climate/weather and people.
- One method is to look at past and present fire regimes and linkages between key factor
- Using DGVMs to address relative roles of
- Opportunity to tackle knowledge gaps

<u>Fire Data Sets</u>

- Some countries/jurisdictions have excellent fire data going back around 100 years or more
- Some have data but of dubious quality
- Others have almost nothing
- Efforts to build Global fire data sets

Summary

- Weather/Climate and fire are strongly linked
- Fire activity is likely to increase significantly with climate change although the response will have large temporal and spatial variability

• Integrated approaches will be required to adapt to climate-change altered fire activity in terms of social, economic and ecological policies and practices

"Can I look now?"

